

USING WSS TO PRIORITIZE BETWEEN WATER PROTECTION MEASURES

N. Gärtner, A. Lindhe, L. Rosén, T. Söderqvist, J. Wahtra

WHAT IS THE PROBLEM?

- > Competing interests when implementing water protection measures a challenge for decision makers
- > Typically disregard of additional services (e.g., cultural services) provided by a clean drinking water source
- > Benefits of protection efforts are therefore underestimated
- > **Needed:** Holistic view that illustrates how water protection measures affect all services

Selected services of a drinking water source

1. WHAT ARE WSS?

Water System Services (WSS) are all services provided by drinking water sources that contribute to human wellbeing.

- > Similar to Ecosystem Services (ESS) but including biotic and abiotic services
- > WSS are derived from the Common International Classification of Ecosystem Services (CICES) v. 5.1, expert elicitations and a literature review
- > They include provisional, regulating and cultural services
- > Specifically tailored for a **Scandinavian context**
- > All WSS are listed in an extensive table with examples

SUMMARY

- > We developed a list of water system services (WSS) based on the CICES **Ecosystem service assessment**
- > WSS are specifically tailored to assess drinking water sources
- > WSS in combination with a **hazard assessment**: it provides a **risk matrix** for identifying different mitigation options
- > We tested the approach on a Swedish drinking water source
- > Comprehensive **decision support:** illustrates all effects of a mitigation measure
- > Communication tool

6. DECISION SUPPORT

With the risk matrix, we can select which hazard sources should be mitigated from two different points:

- > 1. based on the services which are selected to be especially protected or
- > 2. choose the hazard sources which are the biggest contributor to the overall risk
- > WSS-assessment provides transparency for decision making
- > Communication tool for affected stakeholders for consensus building
- > Advantage: Illustrates the risks a hazard source poses towards a variety of services, not only to the service of providing drinking water

2. HOW TO ASSESS WSS?

> Mapping and quantification of WSS via **remote sensing** and **expert elicitation** by going through our developed list (checklist approach)

Example of how the services are listed and described:

Division	Group	Class	Qualification of services	Semi-quantification of services		
Water		Municipal and private water supply, for humans	Drinking water (municipal water supply)	740 m³/d		
	Water for drinking	(ex-situ)	Drinking water (household water)	27 wells		
		Drinking water for animals (ex-situ)	Water for grazing horses	1 establishment with grazing horses		
	Water for non- drinking purpose	Irrigation (ex-situ)	Irrigation of gardens	1 well		
	Energy	Groundwater and surface water as an energy source		318 wells = 2289 MWh/a		

4. HOW TO INTEGRATE WSS?

WSS-mapping is a good tool to illustrate the status quo of a drinking water source.

- > **BUT:** To prioritize protection measures, we contrast hazard sources and their effects on all WSS
- > Hazard assessment is based on the TECHNEAU-database for hazards towards drinking water sources
- > **Risk matrix:** Scoring of hazard's impact on WSS-delivery from no impact (0) to high impact (3) considering e.g., number of sources, location within catchment, probability of release, and type of contaminant

CHANGES OF WSS UNDER SCENARIOS

Two scenarios (restrict heat pumps or restrict domestic abstraction) were compared regarding their delivery of WSS; large bars indicate a high delivery of that service; colors of WSS are only used to separate them

3. CASE STUDY SITE

> The aquifer is exemplary for a small Swedish groundwater source (*glaciofluvial deposit, semi-rural, abstraction rate: 740 m³/d*)

RISK MATRIX

5. RESULTS

Hazard Sources	All identified Water System Services										
	Provisional Services				Regulating Services			Cultural Services			
	Municipal DW supply	Household wells	Water for grazing horses	Irrigation of garden	Heat pumps	Prevention of subsidence	Quality control of freshwater	Springs regulating temp. and humidity	Hiking in the area around the spring	Looking at the springs	Option value
Fire and car company	3	3	2	0	0	0	3	0	0	0	3
Car repair shop	3	3	2	0	0	0	3	0	0	0	3
Septic tanks	3	3	1	0	0	0	2	0	0	0	2
Road E20	3	3	2	1	0	0	3	0	0	0	3
Heat pumps	3	3	1	0	1	0	3	1	0	0	3
Manure spread	3	3	1	0	0	0	3	0	0	0	3
Forestry activities	2	2	1	0	0	0	2	0	0	0	2
Impermeabilizations	1	1	1	1	1	1	0	1	1	1	1
Less precipitation	1	1	1	1	1	2	0	2	2	2	2
Overabstraction	1	1	1	1	1	1	0	1	1	1	1

CONTACT

Nadine Gärtner is a PhD-Student at Chalmers University in Gothenburg nadine.gartner@chalmers.se

